63 research outputs found

    Artificial Biosystems by Printing Biology

    Get PDF
    The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication

    Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovoltaics: Design Strategies and Challenges

    Get PDF
    Over the past decade, halide perovskite systems have captured widespread attention among researchers since their exceptional photovoltaic (PV) performance was disclosed. The unique combination of optoelectronic properties and solution processability shown by these materials has enabled perovskite solar cells (PSCs) to reach efficiencies higher than 25% at low fabrication costs. Moreover, PSCs display enormous potential for modern unconventional PV applications, since they can be made lightweight, semitransparent (ST), and/or flexible by means of appropriate design strategies. In particular, by enabling transparency and high efficiency simultaneously, ST-PSCs hold great promise for future versatile utilization in the context of building-integrated PVs (BIPVs) or as top cells to be coupled with conventional lower-bandgap bottom cells in tandem PV devices. The present Review wants to provide a detailed overview of latest research about ST-PSCs for BIPVs and tandems, by critically reporting on the most updated and effective design strategies in view of these two possible future applications. The differences and similarities between the available approaches are punctually highlighted, emphasizing the importance of a rigorous application-orientated ST-PSC design. Last but not least, the main challenges and issues about device design, operation, and stability that need to be addressed before commercialization are thoroughly scanned

    On the Interaction between 1D Materials and Living Cells

    Get PDF
    One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models relevant for a quantitative description of the 1D material/cell interface, this work offers an unprecedented review of 1D nano- and microscale materials (inorganic, organic, biomolecular) explored so far in this vibrant research field, highlighting their emerging biological applications. The correlation between each 1D material chemistry and the resulting biological response is investigated, allowing to emphasize the advantages and the issues that each class presents. Finally, current challenges and future perspectives are discussed

    Printing ZnO Inks: From Principles to Devices

    Get PDF
    Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations and printing techniques for ZnO-based nanocrystalline inks, as well as of the major applications which have been demonstrated. The most relevant ink-processing conditions so far explored will be correlated with the resulting film morphologies, showing the possibility to tune the ZnO ink composition to achieve facile, versatile, and scalable fabrication of devices of different natures

    Improved Photocatalytic Activity of Polysiloxane TiO2 Composites by Thermally Induced Nanoparticle Bulk Clustering and Dye Adsorption

    Get PDF
    Fine control of nanoparticle clustering within polymeric matrices can be tuned to enhance the physicochemical properties of the resulting composites, which are governed by the interplay of nanoparticle surface segregation and bulk clustering. To this aim, out-of-equilibrium strategies can be leveraged to program the multiscale organization of such systems. Here, we present experimental results indicating that bulk assembly of highly photoactive clusters of titanium dioxide nanoparticles within an in situ synthesized polysiloxane matrix can be thermally tuned. Remarkably, the controlled nanoparticle clustering results in improved degradation photocatalytic performances of the material under 1 sun toward methylene blue. The resulting coatings, in particular the 35 wt % TiO2-loaded composites, show a photocatalytic degradation of about 80%, which was comparable to the equivalent amount of bare TiO2 and two-fold higher with respect to the corresponding composites not subjected to thermal treatment. These findings highlight the role of thermally induced bulk clustering in enhancing photoactive nanoparticle/polymer composite properties

    Label-free approaches for extracellular vesicle detection

    Get PDF
    Extracellular vesicles (EVs) represent pivotal mediators in cell-to-cell communication. They are lipid-membranous carriers of several biomolecules, which can be produced by almost all cells. In the current Era of precision medicine, EVs gained growing attention thanks to their potential in both biomarker discovery and nanotherapeutics applications. However, current technical limitations in isolating and/or detecting EVs restrain their standard use in clinics. This review explores all the state-of-the-art analytical technologies which are currently overcoming these issues. On one end, several innovative optical-, electrical- and spectroscopy-based detection methods represent advantageous label-free methodologies for faster EV detection. On the other end, microfluidics-based lab-on-a-chip tools support EV purification from low-concentrated samples. Altogether, these technologies will strengthen the routine application of EVs in clinics

    On the Effect of Downscaling in Inkjet Printed Life-Inspired Compartments

    Get PDF
    The fabrication of size-scalable liquid compartments is a topic of fundamental importance in synthetic biology, aiming to mimic the structures and the functions of cellular compartments. Here, inkjet printing is demonstrated as a customizable approach to fabricate aqueous compartments at different size regimes (from nanoliter to femtoliter scale) revealing the crucial role of size in governing the emerging of new properties. At first, inkjet printing is shown to produce homogenous aqueous compartments stabilized by oil-confinement with mild surfactants down to the hundreds of picoliter scale [1]. Raster Image Correlation Spectroscopy allows to monitor few intermolecular events by the involvement of protein-binding assays within these compartments [2]. Subsequently, in order to reduce droplet size at values below the nozzle size, a theoretical model from Eggers et al. [3] is experimentally reproduced permitting to obtain femtoliter-scale aqueous droplets from picoliter-scale microchannels [4]. As a remarkable difference to picoliter scale droplets, downscaling at the femtoliter-size triggers the spontaneous formation of molecularly crowded shell structures at the water/oil interface stabilized by a mixture of biocompatible surfactants. The shells have typical thickness in order of hundreds of nanometers, in accordance with theoretical models [5]. Molecular crowding effects in these systems are tested by using fluorescence lifetime imaging under the phasor plot approach [6], revealing different characteristic lifetimes of specific probe molecules in the confined volumes with respect to bulk solutions. The femtoliter-scale compartments autonomously trigger the formation of unique features (e.g., up-concentration, spatial heterogeneity, molecular proximity) that are mediated by the intermolecular interactions in these novel environments, ultimately permitting to mimic the native conditions of sub-cellular scale compartments. The crowding conditions in femtoliter-scale droplets do not to affect the conformation variation of a model DNA hairpin in presence of molecular triggers and of a CYP2E1-catalyzed enzymatic reaction. Our results can be a first step towards the fabrication of size-scalable lab-on-a-chip compartments mimicking sub-cellular environments. References 1. G. Arrabito, F. Cavaleri, V. Montalbano, V. Vetri, M. Leone, B. Pignataro, Lab on Chip, 2016, 16, 4666. 2. M.A. Digman, C. M. Brown, A. R. Horwitz,W.W. Mantulin, and E. Gratton, Biophysical Journal, 2016, 94, 2819. 3. J. Eggers, Phys. Rev. Lett. 1993, 71, 3458. 4. G. Arrabito, F. Cavaleri, A. Porchetta, F. Ricci, V. Vetri, M. Leone, B. Pignataro, Adv. Biosys. 2019, 1900023. 5. M. Staszak, J. Surfactants Deterg., 2016, 19, 297. 6. C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P.J. Donovan, and E. Gratton, Proc. Natl. Acad. Sci. USA 2011, 108, 13582

    Spontaneous Interfacial Fragmentation of Inkjet Printed Oil Droplets and Their electrical characterization

    Get PDF
    This work presents the fabrication of femtoliter-scale oil droplets by inkjet printing based on a novel mechanism for the spontaneous fragmentation at the interface with an immiscible water phase and the electrical characterization of the resulting immersed “daughter” droplets. [1] In particular, picoliter-scale fluorinated oil droplets impact on surfactant laden water phase at moderately high Weber number (101), and are subjected to spreading and capillary instabilities at the water/air interface which ultimately lead to rupture in smaller sized droplets, according to reported models for macroscale droplets systems - [2] the emerging fragmentation results in “daughter” droplets having volumes of about 10-30 % with respect to the initial droplet volume. Remarkably, the picoliter scale downscaling leads to a novel surfactant-driven fragmentation due to the low Bond number (around 10-4-10-5), meaning that droplet immersion is dependent on surface tension forces and not on gravitational forces. In fact, the non-ionic Polyoxyethylene (20) sorbitan monolaurate was observed to permit the droplet immersion in the water phase only if spiked in the water phase at concentrations equal or higher than its critical micellar concentration (i.e. around 0.003% v/v). The resulting oil “daughter” droplets are characterized by a chip with integrated microelectrodes, permitting to extract number, velocities and diameter distribution (peaked at about 3 m) employing electrical impedance measurements. In accordance with reported models, the electrical characterizations show that the droplets have volumes in the femtoliter scale and are subjected to inertial focusing. [3] This work can be considered an important advancement for understanding the effects of downscaling on fragmentation phenomena at immiscible interfaces, leading to a knowledge platform for a tailored oil droplets fabrication applicable for drug encapsulation, pharmaceutic preparations, and thin-film wrapping around droplets. [4] Bibliography 1. D. Spencer, F. Caselli, P. Bisegna and H. Morgan., Lab Chip, 2016, 16, 2467. 2. H. Lhuissier, C. Sun, A. Prosperetti, and D. Lohse, Phys. Rev. Lett., 2013, 110, 3. G. Arrabito, V. Errico, A. De Ninno, F. Cavaleri, V. Ferrara, B. Pignataro, and F.Caselli, Langmuir, 2019, 35, 4936. 4. D. Kumar, J. D. Paulsen, T. P. Russell, N. Menon, Science, 2018, 359, 775

    Self-Cleaning Bending Sensors Based on Semitransparent ZnO Nanostructured Films

    Get PDF
    The design of multifunctional nanostructured materials is the key to the development of smart wearable devices. For instance, nanostructures endowed with both piezoelectric and photocatalytic activities could well be the workhorse for solar-light-driven self-cleaning wearable sensors. In this work, a simple strategy for the assembly of a flexible, semitransparent piezophotocatalytic system is demonstrated by leveraging rational wet chemistry synthesis of ZnO-based nanosheets/nanoflowers (NSs/NFs) under basic pH conditions onto flexible ITO/PET supports. A KMnO4 pretreatment before the ZnO synthesis (seeded ZnO) allows for the control of the density, size, and orientation of the NSs/NFs systems compared to the systems produced in the absence of seeding (seedless ZnO). The electrical response of the sensors is extracted at a 1 V bias as a function of bending in the interval between 0 and 90°, being the responsivity toward bending significantly enhanced by the KMnO4 treatment effect. The photocatalytic activity of the sensors is analyzed in aqueous solution (methylene blue, 25 μM) by a solar simulator, resulting in similar values between seedless and seeded ZnO. Upon bending the sensor, the photocatalytic activity of seedless ZnO is almost unaffected, whereas that of seeded ZnO is improved by about 25%. The sensor’s reusability and repeatability are tested in up to three different cycles. These results open up the way toward the seamless integration of bending sensitivity and photocatalysis into a single device

    Pseudo-Planar Organic Heterojunctions by Sequential Printing of Quasi-Miscible Inks

    Get PDF
    This work deals with the interfacial mixing mechanism of picoliter (pL)-scale droplets produced by sequential inkjet printing of organic-based inks onto ITO/PET surfaces at a moderately high Weber number (~101). Differently from solution dispensing processes at a high Bond number such as spin coating, the deposition by inkjet printing is strictly controlled by droplet velocity, ink viscosity, and surface tension. In particular, this study considers the interfacial mixing of droplets containing the most investigated donor/acceptor couple for organic solar cells, i.e., poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), showing how low-viscosity and low-surface energy inks can be leveraged for the fabrication of an interface suitable for a pseudo-planar heterojunction (pseudo-PHJ) organic solar cell (OSC) that is a convenient alternative to a bulk heterojunction (BHJ) OSC. The resulting thin-film morphology and molecular organization at the P3HT/PCBM interface are investigated, highlighting the roles of dissolution-driven molecular recirculation. This report represents a first step toward the sequential inkjet printing fabrication of pseudo-PHJ OSCs at low consumption of solvents/chemicals
    • …
    corecore